HBase环境搭建(单机)HBase环境搭建(单机)

引言

每当齐同首 颇数目上系列之四 —–
Hadoop+Hive环境多建筑图文详解(单机)
和之前的老数量上系列的二 —–
HBase环境搭建(单机)
中中标搭建了Hive和HBase的环境,并进行了相应的测试。本文主要谈的是怎么样拿Hive和HBase进行整合。

引言

于达成一样篇 杀数量上系列之四 —–
Hadoop+Hive环境多建筑图文详解(单机)
和之前的非常数据上系列的二 —–
HBase环境搭建(单机)
中中标搭建了Hive和HBase的条件,并进行了相应的测试。本文主要谈的是怎么拿Hive和HBase进行整合。

Hive和HBase的通信意图

Hive与HBase整合的兑现是行使两者本身对外的API接口互相通信来就的,其实际工作到由Hive的lib目录中之hive-hbase-handler-*.jar工具类来实现,通信原理如下图所示。
图片 1

Hive和HBase的通信意图

Hive与HBase整合的贯彻是使用两者本身对外的API接口互相通信来完成的,其实际工作到由Hive的lib目录中之hive-hbase-handler-*.jar工具类来落实,通信原理如下图所示。
图片 2

Hive整合HBase后底应用状况:

(一)通过Hive把数量加载到HBase中,数据源可以是文件也可是Hive中的表。
(二)通过做,让HBase支持JOIN、GROUP等SQL查询语法。
(三)通过做,不仅可做到HBase的数实时查询,也可以动用Hive查询HBase中之数码好复杂的数额解析。

Hive整合HBase后底应用状况:

(一)通过Hive把数据加载到HBase中,数据源可以是文件呢可以是Hive中之申。
(二)通过整合,让HBase支持JOIN、GROUP等SQL查询语法。
(三)通过整合,不仅可完成HBase的多寡实时查询,也得以用Hive查询HBase中之数据形成复杂的数量解析。

一律、环境选择

一致、环境选择

1,服务器选择

当地虚拟机
操作系统:linux CentOS 7
Cpu:2核
内存:2G
硬盘:40G

1,服务器选择

地方虚拟机
操作系统:linux CentOS 7
Cpu:2核
内存:2G
硬盘:40G

2,配置选

JDK:1.8 (jdk-8u144-linux-x64.tar.gz)
Hadoop:2.8.2 (hadoop-2.8.2.tar.gz)
Hive: 2.1 (apache-hive-2.1.1-bin.tar.gz)
HBase:1.6.2 (hbase-1.2.6-bin.tar.gz)

2,配置选

JDK:1.8 (jdk-8u144-linux-x64.tar.gz)
Hadoop:2.8.2 (hadoop-2.8.2.tar.gz)
Hive: 2.1 (apache-hive-2.1.1-bin.tar.gz)
HBase:1.6.2 (hbase-1.2.6-bin.tar.gz)

3,下载地址

官网地址
JDK:
http://www.oracle.com/technetwork/java/javase/downloads
Hadopp:
http://www.apache.org/dyn/closer.cgi/hadoop/common
Hive
http://mirror.bit.edu.cn/apache/hive/
HBase:
http://mirror.bit.edu.cn/apache/hbase/

百度云盘
链接:https://pan.baidu.com/s/1jIemIDC 密码:uycu

3,下载地址

官网地址
JDK:
http://www.oracle.com/technetwork/java/javase/downloads
Hadopp:
http://www.apache.org/dyn/closer.cgi/hadoop/common
Hive
http://mirror.bit.edu.cn/apache/hive/
HBase:
http://mirror.bit.edu.cn/apache/hbase/

百度云盘
链接:https://pan.baidu.com/s/1jIemIDC 密码:uycu

老二、服务器的系部署

每当部署Hadoop+Hive+HBase之前,应该先行开一下布置。
举行这些部署为好,使用root权限。

其次、服务器的连锁安排

每当安排Hadoop+Hive+HBase之前,应该先举行一下部署。
召开这些配置为好,使用root权限。

1,更改主机名

先是更改主机名,目的是为了方便管理。
输入:

hostname 

翻看本机的号
下一场改变主机名吧master
输入:

hostnamectl set-hostname master

横流:主机名称改成后,要重开(reboot)才会生效。

1,更改主机名

第一更改主机名,目的是以方便管理。
输入:

hostname 

翻看本机的称
下一场改变主机名也master
输入:

hostnamectl set-hostname master

注:主机名称改成后,要再开(reboot)才会生效。

2,做IP和主机名之投射

改hosts文件,做涉嫌映射
输入

vim /etc/hosts

添加
长机的ip 和 主机名称

192.168.238.128 master

2,做IP和主机名之炫耀

修改hosts文件,做涉嫌映射
输入

vim /etc/hosts

添加
长机的ip 和 主机名称

192.168.238.128 master

3,关闭防火墙

关门防火墙,方便访问。
CentOS 7版本以下输入:
关防火墙

service   iptables stop

CentOS 7 以上之版输入:

systemctl stop firewalld.service

3,关闭防火墙

关门防火墙,方便访问。
CentOS 7版本以下输入:
关防火墙

service   iptables stop

CentOS 7 以上之版输入:

systemctl stop firewalld.service

4,时间设置

翻时日子
输入:

date

翻开服务器时间是否一律,若未一致则更改
改时间命令

date -s ‘MMDDhhmmYYYY.ss’

4,时间设置

查看时日
输入:

date

查服务器时间是否一律,若不均等则改
改变时间命令

date -s ‘MMDDhhmmYYYY.ss’

5,整体的条件布置

/etc/profile 的完整配置

#Java Config
export JAVA_HOME=/opt/java/jdk1.8
export JRE_HOME=/opt/java/jdk1.8/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib

# Scala Config
export SCALA_HOME=/opt/scala/scala-2.12.2


# Spark Config
export  SPARK_HOME=/opt/spark/spark1.6-hadoop2.4-hive

# Zookeeper Config
export ZK_HOME=/opt/zookeeper/zookeeper3.4

# HBase Config
export HBASE_HOME=/opt/hbase/hbase1.2

# Hadoop Config 
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

# Hive Config
export HIVE_HOME=/opt/hive/hive2.1
export HIVE_CONF_DIR=${HIVE_HOME}/conf

export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${SPARK_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${ZK_HOME}/bin:${HBASE_HOME}/bin:${HIVE_HOME}/bin:$PATH

图片 3

横流:具体的布局为投机的啊仍,没有底绝不配置。

5,整体的条件布置

/etc/profile 的圆安排

#Java Config
export JAVA_HOME=/opt/java/jdk1.8
export JRE_HOME=/opt/java/jdk1.8/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib

# Scala Config
export SCALA_HOME=/opt/scala/scala-2.12.2


# Spark Config
export  SPARK_HOME=/opt/spark/spark1.6-hadoop2.4-hive

# Zookeeper Config
export ZK_HOME=/opt/zookeeper/zookeeper3.4

# HBase Config
export HBASE_HOME=/opt/hbase/hbase1.2

# Hadoop Config 
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

# Hive Config
export HIVE_HOME=/opt/hive/hive2.1
export HIVE_CONF_DIR=${HIVE_HOME}/conf

export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${SPARK_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${ZK_HOME}/bin:${HBASE_HOME}/bin:${HIVE_HOME}/bin:$PATH

图片 4

流淌:具体的部署为祥和的呢按照,没有底绝不配置。

老三、Hadoop的环境布置

Hadoop的切实部署在酷数据上系列之一 —–
Hadoop环境搭建(单机)
中介绍得非常详细了。所以本文就盖介绍一下。
流淌:具体配置为友好的也罢按。

其三、Hadoop的条件布置

Hadoop的具体配置当充分数目上系列之一 —–
Hadoop环境搭建(单机)
中介绍得不得了详细了。所以本文就盖介绍一下。
横流:具体部署为相好的吧遵循。

1,环境变量设置

编辑 /etc/profile 文件 :

vim /etc/profile

配置文件:

export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export PATH=.:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:$PATH

1,环境变量设置

编辑 /etc/profile 文件 :

vim /etc/profile

配备文件:

export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
export PATH=.:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:$PATH

2,配置文件更改

事先切换到 /home/hadoop/hadoop2.8/etc/hadoop/ 目下

2,配置文件更改

预先切换到 /home/hadoop/hadoop2.8/etc/hadoop/ 目下

3.2.1 修改 core-site.xml

输入:

vim core-site.xml

在添加:

<configuration>
<property>
        <name>hadoop.tmp.dir</name>
        <value>/root/hadoop/tmp</value>
        <description>Abase for other temporary directories.</description>
   </property>
   <property>
        <name>fs.default.name</name>
        <value>hdfs://master:9000</value>
   </property>
</configuration>

3.2.1 修改 core-site.xml

输入:

vim core-site.xml

在添加:

<configuration>
<property>
        <name>hadoop.tmp.dir</name>
        <value>/root/hadoop/tmp</value>
        <description>Abase for other temporary directories.</description>
   </property>
   <property>
        <name>fs.default.name</name>
        <value>hdfs://master:9000</value>
   </property>
</configuration>

3.2.2修改 hadoop-env.sh

输入:

vim hadoop-env.sh

将${JAVA_HOME} 修改为友好的JDK路径

export   JAVA_HOME=${JAVA_HOME}

修改为:

export   JAVA_HOME=/home/java/jdk1.8

3.2.2修改 hadoop-env.sh

输入:

vim hadoop-env.sh

将${JAVA_HOME} 修改为好的JDK路径

export   JAVA_HOME=${JAVA_HOME}

修改为:

export   JAVA_HOME=/home/java/jdk1.8

3.2.3修改 hdfs-site.xml

输入:

vim hdfs-site.xml

在添加:

<property>
   <name>dfs.name.dir</name>
   <value>/root/hadoop/dfs/name</value>
   <description>Path on the local filesystem where theNameNode stores the namespace and transactions logs persistently.</description>
</property>
<property>
   <name>dfs.data.dir</name>
   <value>/root/hadoop/dfs/data</value>
   <description>Comma separated list of paths on the localfilesystem of a DataNode where it should store its blocks.</description>
</property>
<property>
   <name>dfs.replication</name>
   <value>2</value>
</property>
<property>
      <name>dfs.permissions</name>
      <value>false</value>
      <description>need not permissions</description>
</property>

3.2.3修改 hdfs-site.xml

输入:

vim hdfs-site.xml

在添加:

<property>
   <name>dfs.name.dir</name>
   <value>/root/hadoop/dfs/name</value>
   <description>Path on the local filesystem where theNameNode stores the namespace and transactions logs persistently.</description>
</property>
<property>
   <name>dfs.data.dir</name>
   <value>/root/hadoop/dfs/data</value>
   <description>Comma separated list of paths on the localfilesystem of a DataNode where it should store its blocks.</description>
</property>
<property>
   <name>dfs.replication</name>
   <value>2</value>
</property>
<property>
      <name>dfs.permissions</name>
      <value>false</value>
      <description>need not permissions</description>
</property>

3.2.4 修改mapred-site.xml

如果没 mapred-site.xml
该文件,就复制mapred-site.xml.template文件并重命名为mapred-site.xml。
输入:

vim mapred-site.xml

改者新建的mapred-site.xml文件,在节点内参加配置:

<property>
    <name>mapred.job.tracker</name>
    <value>master:9001</value>
</property>
<property>
      <name>mapred.local.dir</name>
       <value>/root/hadoop/var</value>
</property>
<property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
</property>

3.2.4 修改mapred-site.xml

假如无 mapred-site.xml
该文件,就复制mapred-site.xml.template文件并重命名为mapred-site.xml。
输入:

vim mapred-site.xml

修改是新建的mapred-site.xml文件,在节点内进入配置:

<property>
    <name>mapred.job.tracker</name>
    <value>master:9001</value>
</property>
<property>
      <name>mapred.local.dir</name>
       <value>/root/hadoop/var</value>
</property>
<property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
</property>

3,Hadoop启动

启航之前要先格式化
切换到/home/hadoop/hadoop2.8/bin目录下
输入:

./hadoop  namenode  -format

格式化成功后,再切换到/home/hadoop/hadoop2.8/sbin目录下
启动hdfs和yarn
输入:

start-dfs.sh
start-yarn.sh

启动成功后,输入jsp查看是否启动成功
在浏览器输入 ip+8088 和ip +50070 界面查看是否能够访问
会是访问则启动成功

3,Hadoop启动

启动之前用先格式化
切换到/home/hadoop/hadoop2.8/bin目录下
输入:

./hadoop  namenode  -format

格式化成功后,再切换到/home/hadoop/hadoop2.8/sbin目录下
启动hdfs和yarn
输入:

start-dfs.sh
start-yarn.sh

起先成功后,输入jsp查看是否启动成功
每当浏览器输入 ip+8088 和ip +50070 界面查看是否能够访问
能正确访问则启动成功

季、Hive的条件布置

Hive环境的现实配置于自我之及时首老大数目上系列之四 —–
Hadoop+Hive环境多建筑图文详解(单机)
以及介绍得不得了详细了。本篇就大致介绍下。

季、Hive的环境布置

Hive环境之实际部署于我的立即首生数目上系列的四 —–
Hadoop+Hive环境多建筑图文详解(单机)
以及介绍得深详细了。本篇就盖介绍下。

修改hive-site.xml

切换到 /opt/hive/hive2.1/conf 目录下
将hive-default.xml.template 拷贝一卖,并重命名为hive-site.xml
下一场编辑hive-site.xml文件

cp hive-default.xml.template hive-site.xml
vim hive-site.xml

编辑hive-site.xml文件,在 中添加:

<!-- 指定HDFS中的hive仓库地址 -->  
  <property>  
    <name>hive.metastore.warehouse.dir</name>  
    <value>/root/hive/warehouse</value>  
  </property>  

<property>
    <name>hive.exec.scratchdir</name>
    <value>/root/hive</value>
  </property>

  <!-- 该属性为空表示嵌入模式或本地模式,否则为远程模式 -->  
  <property>  
    <name>hive.metastore.uris</name>  
    <value></value>  
  </property>  

<!-- 指定mysql的连接 -->
 <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>
    </property>
<!-- 指定驱动类 -->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
   <!-- 指定用户名 -->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <!-- 指定密码 -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>
    <property>
   <name>hive.metastore.schema.verification</name>
   <value>false</value>
    <description>
    </description>
 </property>

接下来用布文件被兼有的

${system:java.io.tmpdir}

更改为 /opt/hive/tmp (如果没拖欠文件则开创),
并将以此文件夹赋予读写权限,将
${system:user.name}
更改为 root

例如:
转移之前的:
图片 5
转移后:
图片 6

配置图:
图片 7

注: 由于hive-site.xml
文件被之配置了多,可以透过FTP将它下载下来进行编辑。也得以一直配备好所要的,其他的得去除。
MySQL的连续地址被之master是主机的别名,可以变成ip。

修改hive-site.xml

切换到 /opt/hive/hive2.1/conf 目录下
用hive-default.xml.template 拷贝一卖,并重命名为hive-site.xml
下一场编辑hive-site.xml文件

cp hive-default.xml.template hive-site.xml
vim hive-site.xml

编辑hive-site.xml文件,在 中添加:

<!-- 指定HDFS中的hive仓库地址 -->  
  <property>  
    <name>hive.metastore.warehouse.dir</name>  
    <value>/root/hive/warehouse</value>  
  </property>  

<property>
    <name>hive.exec.scratchdir</name>
    <value>/root/hive</value>
  </property>

  <!-- 该属性为空表示嵌入模式或本地模式,否则为远程模式 -->  
  <property>  
    <name>hive.metastore.uris</name>  
    <value></value>  
  </property>  

<!-- 指定mysql的连接 -->
 <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>
    </property>
<!-- 指定驱动类 -->
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
    </property>
   <!-- 指定用户名 -->
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
    </property>
    <!-- 指定密码 -->
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
    </property>
    <property>
   <name>hive.metastore.schema.verification</name>
   <value>false</value>
    <description>
    </description>
 </property>

接下来将配置文件被保有的

${system:java.io.tmpdir}

变更为 /opt/hive/tmp (如果没该文件则开创),
并将以此文件夹赋予读写权限,将
${system:user.name}
更改为 root

例如:
改之前的:
图片 8
转后:
图片 9

配置图:
图片 10

流动: 由于hive-site.xml
文件被的安排了多,可以经过FTP将她下载下来进行编辑。也可以一直配备好所要的,其他的足去除。
MySQL的连日地址被之master是主机的别名,可以转换成ip。

修改 hive-env.sh

改hive-env.sh 文件,没有就复制 hive-env.sh.template
,并重命名为hive-env.sh

每当是布局文件被补充加

export  HADOOP_HOME=/opt/hadoop/hadoop2.8
export  HIVE_CONF_DIR=/opt/hive/hive2.1/conf
export  HIVE_AUX_JARS_PATH=/opt/hive/hive2.1/lib

修改 hive-env.sh

改hive-env.sh 文件,没有就复制 hive-env.sh.template
,并重命名为hive-env.sh

当斯布局文件中上加

export  HADOOP_HOME=/opt/hadoop/hadoop2.8
export  HIVE_CONF_DIR=/opt/hive/hive2.1/conf
export  HIVE_AUX_JARS_PATH=/opt/hive/hive2.1/lib

上加 数据令包

由于Hive 默认自带的数据库是应用mysql,所以这块就是之所以mysql
用mysql 的教包 上传出 /opt/hive/hive2.1/lib

补充加 数据驱动包

由于Hive 默认自带的数据库是运mysql,所以这块就是用mysql
拿mysql 的教包 上流传 /opt/hive/hive2.1/lib

五、HBase的环境布置

HBase环境之切实可行安排在本人的当下首特别数据上系列的二 —–
HBase环境搭建(单机)
以及介绍得特别详细了。本篇就大致介绍下。

五、HBase的环境布置

HBase环境之切切实实配置于本人的即时首很数据上系列之二 —–
HBase环境搭建(单机)
以及介绍得可怜详细了。本篇就横介绍下。

修改 hbase-env.sh

编制 hbase-env.sh 文件,添加以下配置

export JAVA_HOME=/opt/java/jdk1.8
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HBASE_HOME=/opt/hbase/hbase1.2
export HBASE_CLASSPATH=/opt/hadoop/hadoop2.8/etc/hadoop
export HBASE_PID_DIR=/root/hbase/pids
export HBASE_MANAGES_ZK=false

证明:配置的路线为自己之也罢按。HBASE_MANAGES_ZK=false
是不启用HBase自带的Zookeeper集群。

修改 hbase-env.sh

编纂 hbase-env.sh 文件,添加以下配置

export JAVA_HOME=/opt/java/jdk1.8
export HADOOP_HOME=/opt/hadoop/hadoop2.8
export HBASE_HOME=/opt/hbase/hbase1.2
export HBASE_CLASSPATH=/opt/hadoop/hadoop2.8/etc/hadoop
export HBASE_PID_DIR=/root/hbase/pids
export HBASE_MANAGES_ZK=false

证明:配置的门径为投机的啊仍。HBASE_MANAGES_ZK=false
是勿启用HBase自带的Zookeeper集群。

修改 hbase-site.xml

编hbase-site.xml 文件,在添加如下配置

<!-- 存储目录 -->
<property>  
 <name>hbase.rootdir</name>  
 <value>hdfs://test1:9000/hbase</value>  
 <description>The directory shared byregion servers.</description>  
</property>  
<!-- hbase的端口 -->
<property>  
 <name>hbase.zookeeper.property.clientPort</name>  
 <value>2181</value>  
 <description>Property from ZooKeeper'sconfig zoo.cfg. The port at which the clients will connect.  
 </description>  
</property>  
<!--  超时时间 -->
<property>  
 <name>zookeeper.session.timeout</name>  
 <value>120000</value>  
</property>  
<!--  zookeeper 集群配置。如果是集群,则添加其它的主机地址 -->
<property>  
 <name>hbase.zookeeper.quorum</name>  
 <value>test1</value>  
</property>  
<property>  
 <name>hbase.tmp.dir</name>  
 <value>/root/hbase/tmp</value>  
</property>  
<!-- false是单机模式,true是分布式模式  -->
<property>  
 <name>hbase.cluster.distributed</name>  
 <value>false</value>  
</property>

说明:hbase.rootdir:这个目录是region server的共享目录,用来持久化Hbase
。hbase.cluster.distributed
:Hbase的运作模式。false是单机模式,true是分布式模式。若为false,Hbase和Zookeeper会运行在和一个JVM里面。

修改 hbase-site.xml

编辑hbase-site.xml 文件,在丰富如下配置

<!-- 存储目录 -->
<property>  
 <name>hbase.rootdir</name>  
 <value>hdfs://test1:9000/hbase</value>  
 <description>The directory shared byregion servers.</description>  
</property>  
<!-- hbase的端口 -->
<property>  
 <name>hbase.zookeeper.property.clientPort</name>  
 <value>2181</value>  
 <description>Property from ZooKeeper'sconfig zoo.cfg. The port at which the clients will connect.  
 </description>  
</property>  
<!--  超时时间 -->
<property>  
 <name>zookeeper.session.timeout</name>  
 <value>120000</value>  
</property>  
<!--  zookeeper 集群配置。如果是集群,则添加其它的主机地址 -->
<property>  
 <name>hbase.zookeeper.quorum</name>  
 <value>test1</value>  
</property>  
<property>  
 <name>hbase.tmp.dir</name>  
 <value>/root/hbase/tmp</value>  
</property>  
<!-- false是单机模式,true是分布式模式  -->
<property>  
 <name>hbase.cluster.distributed</name>  
 <value>false</value>  
</property>

证明:hbase.rootdir:这个目录是region server的共享目录,用来持久化Hbase
。hbase.cluster.distributed
:Hbase的运作模式。false是单机模式,true是分布式模式。若否false,Hbase和Zookeeper会运行于同一个JVM里面。

六、Hive整合HBase的条件布置以及测试

六、Hive整合HBase的条件布置以及测试

1,环境布置

坐Hive与HBase整合的兑现是运两者本身对外的API接口互相通信来完成的,其实际工作到由Hive的lib目录中之hive-hbase-handler-.jar工具类来落实。所以只需要将hive的
hive-hbase-handler-
.jar 复制到hbase/lib中即使可以了。
切换到hive/lib目录下
输入:

cp hive-hbase-handler-*.jar /opt/hbase/hbase1.2/lib

图片 11
注:
如果在hive整合hbase中,出现版本之类的题目,那么以hbase的本子为主,将hbase中的jar包覆盖hive的jar包。

1,环境布置

以Hive与HBase整合的兑现是动两者本身对外的API接口互相通信来成功的,其实际工作到由Hive的lib目录中之hive-hbase-handler-.jar工具类来促成。所以仅需要拿hive的
hive-hbase-handler-
.jar 复制到hbase/lib中即使足以了。
切换到hive/lib目录下
输入:

cp hive-hbase-handler-*.jar /opt/hbase/hbase1.2/lib

图片 12
注:
如果在hive整合hbase中,出现版本之类的题目,那么为hbase的版本为主,将hbase中之jar包覆盖hive的jar包。

2,hive和hbase测试

当展开测试的早晚,确保hadoop、hbase、hive环境都成功搭建筑好,并且都成启动了。
开辟xshell的少数个指令窗口
一个上hive,一个上hbase

2,hive和hbase测试

在进行测试的时节,确保hadoop、hbase、hive环境就成搭建筑好,并且都成功启动了。
开拓xshell的蝇头个令窗口
一个上hive,一个上hbase

6.2.1当hive中创造映射hbase的表明

以hive中创造一个映射hbase的表,为了便利,设置两限的表名都也t_student,存储的发明也是此。
在hive中输入:

create table t_student(id int,name string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:name") tblproperties("hbase.table.name"="t_student","hbase.mapred.output.outputtable" = "t_student");

说明:第一个t_student
是hive表中之名,第二单t_student是概念在hbase的table名称
,第三只t_student 是储存数据表的名号(“hbase.mapred.output.outputtable”
= “t_student”这个得不要,表数据就是囤在亚个表中了) 。
(id int,name string)
这个是hive表结构。如果假定增字段,就因为这种格式增加。如果如长字段的诠释,那么在字段后面添加comment
‘你若讲述的’。
例如:
create table t_student(id int comment ‘StudentId’,name string comment
‘StudentName’)
org.apache.hadoop.hive.hbase.HBaseStorageHandler 这个是点名的存储器。
hbase.columns.mapping 是概念在hbase的列族。
比如说:st1就是列族,name就是排。在hive中开创表t_student,这个发明包括个别独字段(int型的id和string型的name)。
映射为hbase中的表t_student,key对应hbase的rowkey,value对应hbase的st1:name列。

申成功创建之后
每当hive、hbase分别中查看表和发明结构
hive中输入

show tables;
describe t_student;

hbase输入:

list
describe ‘t_student’

图片 13

图片 14
得视表已经成功之创始了

6.2.1以hive中创造映射hbase的申

每当hive中创造一个映射hbase的阐明,为了方便,设置两限的表名都也t_student,存储的说明也是者。
在hive中输入:

create table t_student(id int,name string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:name") tblproperties("hbase.table.name"="t_student","hbase.mapred.output.outputtable" = "t_student");

说明:第一个t_student
是hive表中的号,第二只t_student是概念在hbase的table名称
,第三独t_student 是储存数据表的称号(“hbase.mapred.output.outputtable”
= “t_student”这个好毫不,表数据就囤于第二单表中了) 。
(id int,name string)
这个是hive表结构。如果要是多字段,就为这种格式增加。如果要加字段的诠释,那么当字段后面添加comment
‘你只要描述的’。
例如:
create table t_student(id int comment ‘StudentId’,name string comment
‘StudentName’)
org.apache.hadoop.hive.hbase.HBaseStorageHandler 这个是指定的存储器。
hbase.columns.mapping 是概念在hbase的列族。
如:st1就是列族,name就是排。在hive中创造表t_student,这个表包括个别个字段(int型的id和string型的name)。
映射为hbase中之表t_student,key对应hbase的rowkey,value对应hbase的st1:name列。

发明成功创办之后
于hive、hbase分别中查看表和说明结构
hive中输入

show tables;
describe t_student;

hbase输入:

list
describe ‘t_student’

图片 15

图片 16
可看看表已经成功的始建了

6.2.2数据并测试

进入hbase之后
在t_student中补充加点儿修数据 然后查询该表

put 't_student','1001','st1:name','zhangsan'
put 't_student','1002','st1:name','lisi'
scan 't_student'

图片 17

接下来切换到hive中
询问该表
输入:

select * from t_student;

图片 18

下一场在hive中删除该表
流动:因为做测试要扣押结果,所以用表删除了。如果同学等而开测试的口舌,是绝非必要去该表的,因为在后还会见利用该表。

然后查hive和hbase中的表是否去了
输入:

drop table t_student;

图片 19

图片 20
由此这些可以见到hive和hbase之间的多少成功并!

6.2.2数目并测试

进入hbase之后
在t_student中补充加少漫漫数 然后查询该表

put 't_student','1001','st1:name','zhangsan'
put 't_student','1002','st1:name','lisi'
scan 't_student'

图片 21

接下来切换到hive中
询问该表
输入:

select * from t_student;

图片 22

然后以hive中删除该表
注:因为做测试要看结果,所以将表删除了。如果同学等而举行测试的言语,是尚未必要去该表的,因为当后还会见采取该表。

然后查hive和hbase中的说明是否去了
输入:

drop table t_student;

图片 23

图片 24
经这些可观看hive和hbase之间的数量成功并!

6.2.3关联查询测试

6.2.3关系查询测试

hive外部表测试

先行以hbase中盖同等张t_student_info表,添加两只列族
下一场查看表结构
输入:

create 't_student_info','st1','st2'
describe 't_student_info'

图片 25

下一场于hive中创造外部表
说明:创建外部表要使用EXTERNAL 关键字
输入:

create external table t_student_info(id int,age int,sex string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:age,st2:sex") tblproperties("hbase.table.name"="t_student_info");

图片 26

然后在t_student_info 中补充加多少

put 't_student_info','1001','st2:sex','man'
put 't_student_info','1001','st1:age','20'
put 't_student_info','1002','st1:age','18'
put 't_student_info','1002','st2:sex','woman'

图片 27

下一场在hive中查询该表
输入:

select * from t_student_info;

图片 28

询问及数后,然后将t_student 和t_student_info进行关联查询。
输入:

select * from t_student t join t_student ti where t.id=ti.id ;

图片 29
证实:通过关系查询,可以得出表之间是得提到查询的。但是明显看到hive
使用默认的mapreduce 作为引擎是多的慢。。。

别证明:
由自己的虚拟机配置实在太渣,即使调大reduce内存,限制每个reduce处理的数据量,还是不行,最后没办法用企业之测试服务进行测试。
每当查询同一张表的时光,hive没有动用引擎,因此相对较快,如果是开展了关联查询之类的,就会见下引擎,由于hive默认的引擎是mr,所以会见非常缓慢,也和布局有自然关系,hive2.x之后官方就无建议采用mr了。

正文到此结束,谢谢阅读!
版权声明:
作者:虚无境
博客园出处:http://www.cnblogs.com/xuwujing
CSDN出处:http://blog.csdn.net/qazwsxpcm    
私家博客出处:http://www.panchengming.com
原创是,转载请标明出处,谢谢!

hive外部表测试

先期在hbase中修平张t_student_info表,添加两独列族
然后查看表结构
输入:

create 't_student_info','st1','st2'
describe 't_student_info'

图片 30

然后以hive中开创外部表
证:创建外部表要使用EXTERNAL 关键字
输入:

create external table t_student_info(id int,age int,sex string) stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' with serdeproperties("hbase.columns.mapping"=":key,st1:age,st2:sex") tblproperties("hbase.table.name"="t_student_info");

图片 31

然后在t_student_info 中补充加多少

put 't_student_info','1001','st2:sex','man'
put 't_student_info','1001','st1:age','20'
put 't_student_info','1002','st1:age','18'
put 't_student_info','1002','st2:sex','woman'

图片 32

下一场在hive中查询该表
输入:

select * from t_student_info;

图片 33

查询及数后,然后将t_student 和t_student_info进行关联查询。
输入:

select * from t_student t join t_student ti where t.id=ti.id ;

图片 34
证明:通过涉及查询,可以得出表之间是足以提到查询的。但是明显看出hive
使用默认的mapreduce 作为引擎是何其的冉冉。。。

另证明:
鉴于投机之虚拟机配置实在太渣,即使调大reduce内存,限制每个reduce处理的数据量,还是蛮,最后没有道下企业之测试服务进行测试。
以询问同一张表的早晚,hive没有动用引擎,因此相对较快,如果是进行了涉及查询之类的,就会见动引擎,由于hive默认的发动机是mr,所以会见十分缓慢,也跟配置出一定关系,hive2.x下官方就不建议采取mr了。

本文到此结束,谢谢阅读!
版权声明:
作者:虚无境
博客园出处:http://www.cnblogs.com/xuwujing
CSDN出处:http://blog.csdn.net/qazwsxpcm    
村办博客出处:http://www.panchengming.com
原创是,转载请标明出处,谢谢!