人脸图像采集、检查和测试,人脸图像采集、检查和测试

人脸识别,基于人脸部特征消息识别身份的生物体识别技术。录像机、摄像头采集人脸图像或摄像流,自动物检疫查和测试、跟踪图像中脸部,做脸部相关技能处理,人脸检查和测试、人脸关键点检查和测试、人脸验证等。《德克萨斯奥斯汀分校科技(science and technology)评价》(MIT
Technology
Review),二〇一七年海内外十大突破性技术榜单,支付宝“刷脸支付”(Paying with Your
Face)入围。

读书笔记TF058:人脸识别,学习笔记tf0伍拾7个人脸

人脸识别,基于人脸部特征新闻识别身份的浮游生物识别技术。录像机、录像头采集人脸图像或摄像流,自动物检疫查和测试、跟踪图像中脸部,做脸部相关技术处理,人脸检查和测试、人脸关键点检测、人脸验证等。《德克萨斯奥斯汀分校科技(science and technology)评价》(MIT
Technology
Review),二零一七年全球十大突破性技术榜单,支付宝“刷脸支付”(Paying with Your
Face)入围。

人脸识别优势,非强制性(采集形式不便于被发现,被识外人脸图像可积极赢得)、非接触性(用户不须要与装备接触)、并发性(可同时四个人脸检查和测试、跟踪、识别)。深度学习前,人脸识别两手续:高维人工特征提取、降维。古板人脸识别技术基于可知光图像。深度学习+大数量(海量有标注人脸数据)为人脸识别领域主流技术途径。神经互连网人脸识别技术,多量样书图像练习识别模型,无需人工选用特征,样本陶冶进程自行学习,识别准确率能够达到规定的标准99%。

人脸识别技术流程。

人脸图像采集、检查和测试。人脸图像采集,摄像头把人脸图像采集下来,静态图像、动态图像、不一致职位、差异表情。用户在搜集设备拍报范围内,采集设置自动物检疫索并拍照。人脸检查和测试属于指标检查和测试(object
detection)。对要检查和测试对象对象可能率总计,得到待检查和测试对象特征,建立目的检测模型。用模子匹配输入图像,输出匹配区域。人脸检查和测试是人脸识别预处理,准确标定人脸在图像的任务大小。人脸图像方式特点充分,直方图特征、颜色特征、模板特征、结构特征、哈尔特征(Haar-like
feature)。人脸检查和测试挑出有用音信,用特色检测脸部。人脸检查和测试算法,模板匹配模型、Adaboost模型,Adaboost模型速度。精度综合品质最棒,练习慢、检查和测试快,可高达录像流实时检查和测试效果。

人脸图像预处理。基于人脸检查和测试结果,处理图像,服务特征提取。系统得到人脸图像遭到各样规范限制、随机困扰,需缩放、旋转、拉伸、光线补偿、灰度变换、直方图均衡化、规范化、几何纠正、过滤、锐化等图像预处理。

人脸图像特征提取。人脸图像音信数字化,人脸图像转变为一串数字(特征向量)。如,眼睛右边、嘴唇右侧、鼻子、下巴地方,特征点间欧氏距离、曲率、角度提取出特色分量,相关特征连接成长特征向量。

人脸图像匹配、识别。提取人脸图像特点数据与数据仓库储存款和储蓄人脸特征模板搜索匹配,依据相似程度对身份音讯实行判断,设定阈值,相似度越过阈值,输出匹配结果。确认,一对一(1:1)图像相比,申明“你正是你”,金融核实身份、音信安全球。辨认,一对多(1:N)图像匹配,“N人中找你”,摄像流,人走进识别范围就完事辨认,安全防患领域。

人脸识别分类。

人脸检查和测试。检查和测试、定位图片人脸,重回高业饿啊人脸框坐标。对人脸分析、处理的率先步。“滑动窗口”,采纳图像矩形区域作滑动窗口,窗口中领取特征对图像区域描述,依照特征描述判断窗口是或不是人脸。不断遍历供给考察窗口。

人脸关键点检查和测试。定位、重回人脸五官、概况关键点坐标地方。人脸概况、眼睛、眉毛、嘴唇、鼻子轮廓。Face++提供高达106点关键点。人脸关键点定位技术,级联形回归(cascaded
shape regression,
CSMurano)。人脸识别,基于DeepID网络布局。DeepID互连网布局类似卷积神经互联网布局,尾数第一层,有DeepID层,与卷积层4、最大池化层3相连,卷积神经网络层数越高视野域越大,既考虑部分特征,又考虑全局特征。输入层
31x39x1、卷积层1 28x36x20(卷积核4x4x1)、最大池化层1
12x18x20(过滤器2×2)、卷积层2 12x16x20(卷积核3x3x20)、最大池化层2
6x8x40(过滤器2×2)、卷积层3 4x6x60(卷积核3x3x40)、最大池化层2
2x3x60(过滤器2×2)、卷积层4 2x2x80(卷积核2x2x60)、DeepID层
1×160、全连接层 Softmax。《Deep Learning Face Representation from
Predicting 10000 Classes》
http://mmlab.ie.cuhk.edu.hk/pdf/YiSun\_CVPR14.pdf

人脸验证。分析两张人脸同1个人大概大小。输入两张人脸,获得置信度分类、相应阈值,评估相似度。

人脸属性检查和测试。人脸属性辩识、人脸心理分析。https://www.betaface.com/wpa/
在线人脸识别测试。给出人年龄、是或不是有胡子、心思(春风得意、不荒谬、生气、愤怒)、性别、是不是带近视镜、肤色。

人脸识别应用,美图秀秀美颜应用、世纪佳缘查看地下配偶“面相”相似度,支付领域“刷脸支付”,安全防患领域“人脸鉴权”。Face++、商汤科学和技术,提供人脸识别SDK。

人脸检查和测试。https://github.com/davidsandberg/facenet

Florian Schroff、Dmitry Kalenichenko、James Philbin论文《FaceNet: A
Unified Embedding for Face Recognition and Clustering》
https://arxiv.org/abs/1503.03832
https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw

LFW(Labeled Faces in the Wild
Home)数据集。http://vis-www.cs.umass.edu/lfw/
。美利坚同车笠之盟新罕布什尔大学阿姆斯特分校总计机视觉实验室整理。13233张图纸,57四十11位。40九十七人唯有一张图片,1682个人多于一张。每张图片尺寸250×250。人脸图片在每一种人物名字文件夹下。

数据预处理。校准代码
https://github.com/davidsandberg/facenet/blob/master/src/align/align\_dataset\_mtcnn.py

检查和测试所用数据集校准为和预陶冶模型所用数据集大小同等。
安装环境变量

export PYTHONPATH=[…]/facenet/src

校准命令

for N in {1..4}; do python src/align/align_dataset_mtcnn.py
~/datasets/lfw/raw ~/datasets/lfw/lfw_mtcnnpy_160 –image_size 160
–margin 32 –random_order –gpu_memory_fraction 0.25 & done

预磨炼模型20170216-091149.zip
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk
训练集 MS-Celeb-1M数据集
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
。微软人脸识别数据库,有名气的人榜选用前100万名流,搜索引擎采集每个有名的人100张人脸图片。预操练模型准确率0.993+-0.004。

检测。python src/validate_on_lfw.py datasets/lfw/lfw_mtcnnpy_160
models
标准比较,采纳facenet/data/pairs.txt,官方随机生成数据,匹配和不匹配人名和图片编号。

十折交叉验证(10-fold cross
validation),精度测试方法。数据集分成10份,轮流将内部9份做演习集,1份做测试保,15遍结果均值作算法精度猜想。一般必要反复10折交叉验证求均值。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate

def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:

# Read the file containing the pairs used for testing
# 1. 读入以前的pairs.txt文件
# 读入后如[[‘Abel_Pacheco’,’1′,’4′]]
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
# 获取文件路径和是还是不是协作关系对
paths, actual_issame =
lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs,
args.lfw_file_ext)
# Load the model
# 2. 加载模型
facenet.load_model(args.model)

# Get input and output tensors
# 获取输入输出张量
images_placeholder =
tf.get_default_graph().get_tensor_by_name(“input:0”)
embeddings =
tf.get_default_graph().get_tensor_by_name(“embeddings:0”)
phase_train_placeholder =
tf.get_default_graph().get_tensor_by_name(“phase_train:0”)

#image_size = images_placeholder.get_shape()[1] # For some reason
this doesn’t work for frozen graphs
image_size = args.image_size
embedding_size = embeddings.get_shape()[1]

# Run forward pass to calculate embeddings
# 3. 使用前向传来验证
print(‘Runnning forward pass on LFW images’)
batch_size = args.lfw_batch_size
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) #
总共批次数
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images,
phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings,
feed_dict=feed_dict)

# 4. 划算准确率、验证率,十折交叉验证措施
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array,
actual_issame, nrof_folds=args.lfw_nrof_folds)
print(‘Accuracy: %1.3f+-%1.3f’ % (np.mean(accuracy),
np.std(accuracy)))
print(‘Validation rate: %2.5f+-%2.5f @ FAR=%2.5f’ % (val, val_std,
far))
# 得到auc值
auc = metrics.auc(fpr, tpr)
print(‘Area Under Curve (AUC): %1.3f’ % auc)
# 1获得错误率(eer)
eer = brentq(lambda x: 1. – x – interpolate.interp1d(fpr, tpr)(x), 0.,
1.)
print(‘Equal Error Rate (EER): %1.3f’ % eer)

def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument(‘lfw_dir’, type=str,
help=’Path to the data directory containing aligned LFW face
patches.’)
parser.add_argument(‘–lfw_batch_size’, type=int,
help=’Number of images to process in a batch in the LFW test set.’,
default=100)
parser.add_argument(‘model’, type=str,
help=’Could be either a directory containing the meta_file and
ckpt_file or a model protobuf (.pb) file’)
parser.add_argument(‘–image_size’, type=int,
help=’Image size (height, width) in pixels.’, default=160)
parser.add_argument(‘–lfw_pairs’, type=str,
help=’The file containing the pairs to use for validation.’,
default=’data/pairs.txt’)
parser.add_argument(‘–lfw_file_ext’, type=str,
help=’The file extension for the LFW dataset.’, default=’png’,
choices=[‘jpg’, ‘png’])
parser.add_argument(‘–lfw_nrof_folds’, type=int,
help=’Number of folds to use for cross validation. Mainly used for
testing.’, default=10)
return parser.parse_args(argv)
if __name__ == ‘__main__’:
main(parse_arguments(sys.argv[1:]))

性别、年龄识别。https://github.com/dpressel/rude-carnie

Adience
数据集。http://www.openu.ac.il/home/hassner/Adience/data.html\#agegender
。26580张图片,2284类,年龄范围几个区段(0~2、4~6、8~13、15~20、25~32、38~43、48~53、60~),含有噪声、姿势、光照变化。aligned
# 经过剪裁对齐多少,faces #
原始数据。fold_0_data.txt至fold_4_data.txt
全体数目符号。fold_frontal_0_data.txt至fold_frontal_4_data.txt
仅用类似正面态度面部标记。数据结构 user_id
用户Flickr帐户ID、original_image 图片文件名、face_id
人标识符、age、gender、x、y、dx、dy 人脸边框、tilt_ang
切斜角度、fiducial_yaw_angle 基准偏移角度、fiducial_score
基准分数。https://www.flickr.com/

数量预处理。脚本把多少处理成TFRecords格式。https://github.com/dpressel/rude-carnie/blob/master/preproc.py
https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds文件夹,已经对训练集、测试集划分、标注。gender\_train.txt、gender\_val.txt
图片列表 Adience 数据集处理TFRecords文件。图片处理为大小256×256
JPEG编码翼虎GB图像。tf.python_io.TFRecordWriter写入TFRecords文件,输出文件output_file。

创设模型。年龄、性别磨练模型,Gil Levi、Tal Hassner散文《Age and Gender
Classification Using Convolutional Neural
Networks》http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.722.9654&rank=1
。模型 https://github.com/dpressel/rude-carnie/blob/master/model.py
。tenforflow.contrib.slim。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import
inception_v3_base
TOWER_NAME = ‘tower’
def select_model(name):
if name.startswith(‘inception’):
print(‘selected (fine-tuning) inception model’)
return inception_v3
elif name == ‘bn’:
print(‘selected batch norm model’)
return levi_hassner_bn
print(‘selected default model’)
return levi_hassner
def get_checkpoint(checkpoint_path, requested_step=None,
basename=’checkpoint’):
if requested_step is not None:
model_checkpoint_path = ‘%s/%s-%s’ % (checkpoint_path, basename,
requested_step)
if os.path.exists(model_checkpoint_path) is None:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step =
ckpt.model_checkpoint_path.split(‘/’)[-1].split(‘-‘)[-1]
return ckpt.model_checkpoint_path, global_step
else:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub(‘%s_[0-9]*/’ % TOWER_NAME, ”, x.op.name)
tf.summary.histogram(tensor_name + ‘/activations’, x)
tf.summary.scalar(tensor_name + ‘/sparsity’, tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.00004
stddev=0.1
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“InceptionV3”, “InceptionV3”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope(“logits”):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding=”VALID”, scope=”pool”)
net = tf.nn.dropout(net, pkeep, name=’droplast’)
net = flatten(net, scope=”flatten”)

with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassnerBN”, “LeviHassnerBN”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding=’SAME’,
biases_initializer=tf.constant_initializer(0.), scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassner”, “LeviHassner”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name=’norm1′)
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001,
beta=0.75, name=’norm2′)
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1],
biases_initializer=tf.constant_initializer(0.), padding=’SAME’,
scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output

陶冶模型。https://github.com/dpressel/rude-carnie/blob/master/train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
from model import select_model
import json
import re
LAMBDA = 0.01
MOM = 0.9
tf.app.flags.DEFINE_string(‘pre_checkpoint_path’, ”,
“””If specified, restore this pretrained model “””
“””before beginning any training.”””)
tf.app.flags.DEFINE_string(‘train_dir’,
‘/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0’,
‘Training directory’)
tf.app.flags.DEFINE_boolean(‘log_device_placement’, False,
“””Whether to log device placement.”””)
tf.app.flags.DEFINE_integer(‘num_preprocess_threads’, 4,
‘Number of preprocessing threads’)
tf.app.flags.DEFINE_string(‘optim’, ‘Momentum’,
‘Optimizer’)
tf.app.flags.DEFINE_integer(‘image_size’, 227,
‘Image size’)
tf.app.flags.DEFINE_float(‘eta’, 0.01,
‘Learning rate’)
tf.app.flags.DEFINE_float(‘pdrop’, 0.,
‘Dropout probability’)
tf.app.flags.DEFINE_integer(‘max_steps’, 40000,
‘Number of iterations’)
tf.app.flags.DEFINE_integer(‘steps_per_decay’, 10000,
‘Number of steps before learning rate decay’)
tf.app.flags.DEFINE_float(‘eta_decay_rate’, 0.1,
‘Learning rate decay’)
tf.app.flags.DEFINE_integer(‘epochs’, -1,
‘Number of epochs’)
tf.app.flags.DEFINE_integer(‘batch_size’, 128,
‘Batch size’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint name’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘pre_model’,
”,#’./inception_v3.ckpt’,
‘checkpoint file’)
FLAGS = tf.app.flags.FLAGS
# Every 5k steps cut learning rate in half
def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
print(‘decay [%f] every [%d] steps’ % (decay_rate, at_step))
def _decay(lr, global_step):
return tf.train.exponential_decay(lr, global_step,
at_step, decay_rate, staircase=True)
return _decay
def optimizer(optim, eta, loss_fn, at_step, decay_rate):
global_step = tf.Variable(0, trainable=False)
optz = optim
if optim == ‘Adadelta’:
optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
lr_decay_fn = None
elif optim == ‘Momentum’:
optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta,
optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name=’cross_entropy_per_example’)
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name=’cross_entropy’)
tf.add_to_collection(‘losses’, cross_entropy_mean)
losses = tf.get_collection(‘losses’)
regularization_losses =
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = cross_entropy_mean + LAMBDA *
sum(regularization_losses)
tf.summary.scalar(‘tl (raw)’, total_loss)
#total_loss = tf.add_n(losses + regularization_losses,
name=’total_loss’)
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=’avg’)
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + ‘ (raw)’, l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss
def main(argv=None):
with tf.Graph().as_default():
model_fn = select_model(FLAGS.model_type)
# Open the metadata file and figure out nlabels, and size of epoch
#
打开元数据文件md.json,那几个文件是在预处理多少时生成。找出nlabels、epoch大小
input_file = os.path.join(FLAGS.train_dir, ‘md.json’)
print(input_file)
with open(input_file, ‘r’) as f:
md = json.load(f)
images, labels, _ = distorted_inputs(FLAGS.train_dir,
FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
logits = model_fn(md[‘nlabels’], images, 1-FLAGS.pdrop, True)
total_loss = loss(logits, labels)
train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss,
FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
tf.global_variables_initializer().run(session=sess)
# This is total hackland, it only works to fine-tune iv3
# 本例可以输入预锻炼模型英斯ption V3,可用来微调 Inception V3
if FLAGS.pre_model:
inception_variables = tf.get_collection(
tf.GraphKeys.VARIABLES, scope=”InceptionV3″)
restorer = tf.train.Saver(inception_variables)
restorer.restore(sess, FLAGS.pre_model)
if FLAGS.pre_checkpoint_path:
if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
print(‘Trying to restore checkpoint from %s’ %
FLAGS.pre_checkpoint_path)
restorer = tf.train.Saver()
tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
print(‘%s: Pre-trained model restored from %s’ %
(datetime.now(), FLAGS.pre_checkpoint_path))
# 将ckpt文件存款和储蓄在run-(pid)目录
run_dir = ‘%s/run-%d’ % (FLAGS.train_dir, os.getpid())
checkpoint_path = ‘%s/%s’ % (run_dir, FLAGS.checkpoint)
if tf.gfile.Exists(run_dir) is False:
print(‘Creating %s’ % run_dir)
tf.gfile.MakeDirs(run_dir)
tf.train.write_graph(sess.graph_def, run_dir, ‘model.pb’,
as_text=True)
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
steps_per_train_epoch = int(md[‘train_counts’] /
FLAGS.batch_size)
num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs
* steps_per_train_epoch
print(‘Requested number of steps [%d]’ % num_steps)

for step in xrange(num_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, total_loss])
duration = time.time() – start_time
assert not np.isnan(loss_value), ‘Model diverged with loss = NaN’
# 每10步记录2回摘要文件,保存三个检查点文件
if step % 10 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)

format_str = (‘%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ‘
‘sec/batch)’)
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Loss only actually evaluated every 100 steps?
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)

if step % 1000 == 0 or (step + 1) == num_steps:
saver.save(sess, checkpoint_path, global_step=step)
if __name__ == ‘__main__’:
tf.app.run()

证实模型。https://github.com/dpressel/rude-carnie/blob/master/guess.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import *
import os
import json
import csv
RESIZE_FINAL = 227
GENDER_LIST =[‘M’,’F’]
AGE_LIST = [‘(0, 2)’,'(4, 6)’,'(8, 12)’,'(15, 20)’,'(25, 32)’,'(38,
43)’,'(48, 53)’,'(60, 100)’]
MAX_BATCH_SZ = 128
tf.app.flags.DEFINE_string(‘model_dir’, ”,
‘Model directory (where training data lives)’)
tf.app.flags.DEFINE_string(‘class_type’, ‘age’,
‘Classification type (age|gender)’)
tf.app.flags.DEFINE_string(‘device_id’, ‘/cpu:0’,
‘What processing unit to execute inference on’)
tf.app.flags.DEFINE_string(‘filename’, ”,
‘File (Image) or File list (Text/No header TSV) to process’)
tf.app.flags.DEFINE_string(‘target’, ”,
‘CSV file containing the filename processed along with best guess and
score’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint basename’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘requested_step’, ”, ‘Within the model
directory, a requested step to restore e.g., 9000’)
tf.app.flags.DEFINE_boolean(‘single_look’, False, ‘single look at the
image or multiple crops’)
tf.app.flags.DEFINE_string(‘face_detection_model’, ”, ‘Do frontal
face detection with model specified’)
tf.app.flags.DEFINE_string(‘face_detection_type’, ‘cascade’, ‘Face
detection model type (yolo_tiny|cascade)’)
FLAGS = tf.app.flags.FLAGS
def one_of(fname, types):
return any([fname.endswith(‘.’ + ty) for ty in types])
def resolve_file(fname):
if os.path.exists(fname): return fname
for suffix in (‘.jpg’, ‘.png’, ‘.JPG’, ‘.PNG’, ‘.jpeg’):
cand = fname + suffix
if os.path.exists(cand):
return cand
return None
def classify_many_single_crop(sess, label_list, softmax_output,
coder, images, image_files, writer):
try:
num_batches = math.ceil(len(image_files) / MAX_BATCH_SZ)
pg = ProgressBar(num_batches)
for j in range(num_batches):
start_offset = j * MAX_BATCH_SZ
end_offset = min((j + 1) * MAX_BATCH_SZ, len(image_files))

batch_image_files = image_files[start_offset:end_offset]
print(start_offset, end_offset, len(batch_image_files))
image_batch = make_multi_image_batch(batch_image_files, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
batch_sz = batch_results.shape[0]
for i in range(batch_sz):
output_i = batch_results[i]
best_i = np.argmax(output_i)
best_choice = (label_list[best_i], output_i[best_i])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)
if writer is not None:
f = batch_image_files[i]
writer.writerow((f, best_choice[0], ‘%.2f’ % best_choice[1]))
pg.update()
pg.done()
except Exception as e:
print(e)
print(‘Failed to run all images’)
def classify_one_multi_crop(sess, label_list, softmax_output,
coder, images, image_file, writer):
try:
print(‘Running file %s’ % image_file)
image_batch = make_multi_crop_batch(image_file, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]

for i in range(1, batch_sz):
output = output + batch_results[i]

output /= batch_sz
best = np.argmax(output) # 最大概品质分类
best_choice = (label_list[best], output[best])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)

nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print(‘Guess @ 2 %s, prob = %.2f’ % (label_list[second_best],
output[second_best]))
if writer is not None:
writer.writerow((image_file, best_choice[0], ‘%.2f’ %
best_choice[1]))
except Exception as e:
print(e)
print(‘Failed to run image %s ‘ % image_file)
def list_images(srcfile):
with open(srcfile, ‘r’) as csvfile:
delim = ‘,’ if srcfile.endswith(‘.csv’) else ‘\t’
reader = csv.reader(csvfile, delimiter=delim)
if srcfile.endswith(‘.csv’) or srcfile.endswith(‘.tsv’):
print(‘skipping header’)
_ = next(reader)

return [row[0] for row in reader]
def main(argv=None): # pylint: disable=unused-argument
files = []

if FLAGS.face_detection_model:
print(‘Using face detector (%s) %s’ % (FLAGS.face_detection_type,
FLAGS.face_detection_model))
face_detect = face_detection_model(FLAGS.face_detection_type,
FLAGS.face_detection_model)
face_files, rectangles = face_detect.run(FLAGS.filename)
print(face_files)
files += face_files
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
label_list = AGE_LIST if FLAGS.class_type == ‘age’ else
GENDER_LIST
nlabels = len(label_list)
print(‘Executing on %s’ % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):

images = tf.placeholder(tf.float32, [None, RESIZE_FINAL,
RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()

requested_step = FLAGS.requested_step if FLAGS.requested_step else
None

checkpoint_path = ‘%s’ % (FLAGS.model_dir)
model_checkpoint_path, global_step =
get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)

saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)

softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
# Support a batch mode if no face detection model
if len(files) == 0:
if (os.path.isdir(FLAGS.filename)):
for relpath in os.listdir(FLAGS.filename):
abspath = os.path.join(FLAGS.filename, relpath)

if os.path.isfile(abspath) and any([abspath.endswith(‘.’ + ty) for ty
in (‘jpg’, ‘png’, ‘JPG’, ‘PNG’, ‘jpeg’)]):
print(abspath)
files.append(abspath)
else:
files.append(FLAGS.filename)
# If it happens to be a list file, read the list and clobber the
files
if any([FLAGS.filename.endswith(‘.’ + ty) for ty in (‘csv’, ‘tsv’,
‘txt’)]):
files = list_images(FLAGS.filename)

writer = None
output = None
if FLAGS.target:
print(‘Creating output file %s’ % FLAGS.target)
output = open(FLAGS.target, ‘w’)
writer = csv.writer(output)
writer.writerow((‘file’, ‘label’, ‘score’))
image_files = list(filter(lambda x: x is not None, [resolve_file(f)
for f in files]))
print(image_files)
if FLAGS.single_look:
classify_many_single_crop(sess, label_list, softmax_output, coder,
images, image_files, writer)
else:
for image_file in image_files:
classify_one_multi_crop(sess, label_list, softmax_output, coder,
images, image_file, writer)
if output is not None:
output.close()

if __name__ == ‘__main__’:
tf.app.run()

微软脸部图片识别性别、年龄网站 http://how-old.net/
。图片识别年龄、性别。遵照标题查找图片。

参考资料:
《TensorFlow技术解析与实战》

迎接推荐东京机械学习工作机遇,我的微信:qingxingfengzi

http://www.bkjia.com/Pythonjc/1231904.htmlwww.bkjia.comtruehttp://www.bkjia.com/Pythonjc/1231904.htmlTechArticle学习笔记TF058:人脸识别,学习笔记tf058人脸
人脸识别,基于人脸部特征消息识别身份的生物体识别技术。摄像机、摄像头采集人脸图像或摄像…

人脸识别优势,非强制性(采集格局不便于被发现,被识外人脸图像可积极获取)、非接触性(用户不必要与装备接触)、并发性(可同时三人脸检查和测试、跟踪、识别)。深度学习前,人脸识别两手续:高维人工特征提取、降维。古板人脸识别技术基于可知光图像。深度学习+大数量(海量有标注人脸数据)为人脸识别领域主流技术途径。神经网络人脸识别技术,大量样书图像磨练识别模型,无需人工选用特征,样本陶冶进度自行学习,识别准确率能够达到99%。

人脸识别技术流程。

人脸图像采集、检查和测试。人脸图像采集,录制头把人脸图像采集下来,静态图像、动态图像、区别地点、不一样表情。用户在征集设备拍报范围内,采集设置自动搜索并录像。人脸检查和测试属于目的检查和测试(object
detection)。对要检查和测试对象对象可能率计算,得到待检查和测试对象特征,建立目的检查和测试模型。用模子匹配输入图像,输出匹配区域。人脸检查和测试是人脸识别预处理,准确标定人脸在图像的地点大小。人脸图像形式特点丰盛,直方图特征、颜色特征、模板特征、结构特征、哈尔特征(Haar-like
feature)。人脸检查和测试挑出有用音讯,用特色检查和测试脸部。人脸检测算法,模板匹配模型、Adaboost模型,Adaboost模型速度。精度综合质量最佳,练习慢、检查和测试快,可直达摄像流实时检查和测试效果。

人脸图像预处理。基于人脸检查和测试结果,处理图像,服务特征提取。系统得到人脸图像遭到种种口径限制、随机干扰,需缩放、旋转、拉伸、光线补偿、灰度变换、直方图均衡化、规范化、几何修正、过滤、锐化等图像预处理。

人脸图像特征提取。人脸图像新闻数字化,人脸图像转变为一串数字(特征向量)。如,眼睛左侧、嘴唇右侧、鼻子、下巴地点,特征点间欧氏距离、曲率、角度提取出特色分量,相关特征连接成长特征向量。

人脸图像匹配、识别。提取人脸图像特点数据与数据仓库储存款和储蓄人脸特征模板搜索匹配,依照相似程度对地位消息举行判定,设定阈值,相似度越过阈值,输出匹配结果。确认,一对一(1:1)图像比较,表明“你就是您”,金融核实身份、消息安全领域。辨认,一对多(1:N)图像匹配,“N人中找你”,录像流,人走进识别范围就做到辨认,安全防护领域。

人脸识别分类。

人脸检查和测试。检查和测试、定位图片人脸,再次来到高业饿啊人脸框坐标。对人脸分析、处理的率先步。“滑动窗口”,选取图像矩形区域作滑动窗口,窗口中领到特征对图像区域描述,根据特征描述判断窗口是还是不是人脸。不断遍历供给考察窗口。

人脸关键点检查和测试。定位、重回人脸五官、概略关键点坐标地方。人脸轮廓、眼睛、眉毛、嘴唇、鼻子概况。Face++提供高达106点关键点。人脸关键点定位技术,级联形回归(cascaded
shape regression,
CS奥迪Q7)。人脸识别,基于DeepID网络布局。DeepID互联网布局类似卷积神经网络布局,尾数第2层,有DeepID层,与卷积层4、最大池化层3相连,卷积神经网络层数越高视野域越大,既考虑部分特征,又考虑全局特征。输入层
31x39x1、卷积层1 28x36x20(卷积核4x4x1)、最大池化层1
12x18x20(过滤器2×2)、卷积层2 12x16x20(卷积核3x3x20)、最大池化层2
6x8x40(过滤器2×2)、卷积层3 4x6x60(卷积核3x3x40)、最大池化层2
2x3x60(过滤器2×2)、卷积层4 2x2x80(卷积核2x2x60)、DeepID层
1×160、全连接层 Softmax。《Deep Learning Face Representation from
Predicting 10000 Classes》
http://mmlab.ie.cuhk.edu.hk/pdf/YiSun\_CVPR14.pdf

人脸验证。分析两张人脸同1位大概大小。输入两张人脸,获得置信度分类、相应阈值,评估相似度。

人脸属性检查和测试。人脸属性辩识、人脸激情分析。https://www.betaface.com/wpa/
在线人脸识别测试。给出人年龄、是还是不是有胡子、心思(安心乐意、平常、生气、愤怒)、性别、是不是带近视镜、肤色。

人脸识别应用,美图秀秀美颜应用、世纪佳缘查看地下配偶“面相”相似度,支付领域“刷脸支付”,安全防护领域“人脸鉴权”。Face++、商汤科学技术,提供人脸识别SDK。

人脸检查和测试。https://github.com/davidsandberg/facenet

Florian Schroff、Dmitry Kalenichenko、James Philbin论文《FaceNet: A
Unified Embedding for Face Recognition and Clustering》
https://arxiv.org/abs/1503.03832
https://github.com/davidsandberg/facenet/wiki/Validate-on-lfw

LFW(Labeled Faces in the Wild
Home)数据集。http://vis-www.cs.umass.edu/lfw/
。U.S.A.南卡罗来纳大学阿姆斯特分校总计机视觉实验室整理。13233张图片,5746个人。409陆人唯有一张图纸,16捌12位多于一张。每张图片尺寸250×250。人脸图片在每种人物名字文件夹下。

数据预处理。校准代码
https://github.com/davidsandberg/facenet/blob/master/src/align/align\_dataset\_mtcnn.py

检查和测试所用数据集校准为和预陶冶模型所用数据集大小同等。
安装环境变量

export PYTHONPATH=[…]/facenet/src

校准命令

for N in {1..4}; do python src/align/align_dataset_mtcnn.py
~/datasets/lfw/raw ~/datasets/lfw/lfw_mtcnnpy_160 –image_size 160
–margin 32 –random_order –gpu_memory_fraction 0.25 & done

预练习模型20170216-091149.zip
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk
训练集 MS-Celeb-1M数据集
https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-celebrities-real-world/
。微软人脸识别数据库,有名的人榜选取前100万巨星,搜索引擎采集每种名家100张人脸图片。预陶冶模型准确率0.993+-0.004。

检测。python src/validate_on_lfw.py datasets/lfw/lfw_mtcnnpy_160
models
条件比较,接纳facenet/data/pairs.txt,官方随机生成多少,匹配和不匹配人名和图纸编号。

十折交叉验证(10-fold cross
validation),精度测试方法。数据集分成10份,轮流将中间9份做练习集,1份做测试保,11遍结果均值作算法精度预计。一般必要反复10折交叉验证求均值。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate

def main(args):
with tf.Graph().as_default():
with tf.Session() as sess:

# Read the file containing the pairs used for testing
# 1. 读入在此之前的pairs.txt文件
# 读入后如[[‘Abel_Pacheco’,’1′,’4′]]
pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
# Get the paths for the corresponding images
# 获取文件路径和是还是不是同盟关系对
paths, actual_issame =
lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs,
args.lfw_file_ext)
# Load the model
# 2. 加载模型
facenet.load_model(args.model)

# Get input and output tensors
# 获取输入输出张量
澳门永利网上娱乐,images_placeholder =
tf.get_default_graph().get_tensor_by_name(“input:0”)
embeddings =
tf.get_default_graph().get_tensor_by_name(“embeddings:0”)
phase_train_placeholder =
tf.get_default_graph().get_tensor_by_name(“phase_train:0”)

#image_size = images_placeholder.get_shape()[1] # For some reason
this doesn’t work for frozen graphs
image_size = args.image_size
embedding_size = embeddings.get_shape()[1]

# Run forward pass to calculate embeddings
# 3. 使用前向传播验证
print(‘Runnning forward pass on LFW images’)
batch_size = args.lfw_batch_size
nrof_images = len(paths)
nrof_batches = int(math.ceil(1.0*nrof_images / batch_size)) #
总共批次数
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches):
start_index = i*batch_size
end_index = min((i+1)*batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, image_size)
feed_dict = { images_placeholder:images,
phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings,
feed_dict=feed_dict)

# 4. 盘算准确率、验证率,十折交叉验证格局
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array,
actual_issame, nrof_folds=args.lfw_nrof_folds)
print(‘Accuracy: %1.3f+-%1.3f’ % (np.mean(accuracy),
np.std(accuracy)))
print(‘Validation rate: %2.5f+-%2.5f @ FAR=%2.5f’ % (val, val_std,
far))
# 得到auc值
auc = metrics.auc(fpr, tpr)
print(‘Area Under Curve (AUC): %1.3f’ % auc)
# 1获得错误率(eer)
eer = brentq(lambda x: 1. – x – interpolate.interp1d(fpr, tpr)(x), 0.,
1.)
print(‘Equal Error Rate (EER): %1.3f’ % eer)

def parse_arguments(argv):
parser = argparse.ArgumentParser()

parser.add_argument(‘lfw_dir’, type=str,
help=’Path to the data directory containing aligned LFW face
patches.’)
parser.add_argument(‘–lfw_batch_size’, type=int,
help=’Number of images to process in a batch in the LFW test set.’,
default=100)
parser.add_argument(‘model’, type=str,
help=’Could be either a directory containing the meta_file and
ckpt_file or a model protobuf (.pb) file’)
parser.add_argument(‘–image_size’, type=int,
help=’Image size (height, width) in pixels.’, default=160)
parser.add_argument(‘–lfw_pairs’, type=str,
help=’The file containing the pairs to use for validation.’,
default=’data/pairs.txt’)
parser.add_argument(‘–lfw_file_ext’, type=str,
help=’The file extension for the LFW dataset.’, default=’png’,
choices=[‘jpg’, ‘png’])
parser.add_argument(‘–lfw_nrof_folds’, type=int,
help=’Number of folds to use for cross validation. Mainly used for
testing.’, default=10)
return parser.parse_args(argv)
if __name__ == ‘__main__’:
main(parse_arguments(sys.argv[1:]))

性别、年龄识别。https://github.com/dpressel/rude-carnie

Adience
数据集。http://www.openu.ac.il/home/hassner/Adience/data.html\#agegender
。26580张图纸,2284类,年龄范围七个区段(0~2、4~6、8~13、15~20、25~32、38~43、48~53、60~),含有噪声、姿势、光照变化。aligned
# 经过剪裁对齐多少,faces #
原始数据。fold_0_data.txt至fold_4_data.txt
全部数量符号。fold_frontal_0_data.txt至fold_frontal_4_data.txt
仅用类似正面态度面部标记。数据结构 user_id
用户Flickr帐户ID、original_image 图片文件名、face_id
人标识符、age、gender、x、y、dx、dy 人脸边框、tilt_ang
切斜角度、fiducial_yaw_angle 基准偏移角度、fiducial_score
基准分数。https://www.flickr.com/

数量预处理。脚本把多少处理成TFRecords格式。https://github.com/dpressel/rude-carnie/blob/master/preproc.py
https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds文件夹,已经对训练集、测试集划分、标注。gender\_train.txt、gender\_val.txt
图片列表 Adience 数据集处理TFRecords文件。图片处理为大小256×256
JPEG编码大切诺基GB图像。tf.python_io.TFRecordWriter写入TFRecords文件,输出文件output_file。

营造立模型型。年龄、性别陶冶模型,Gil Levi、Tal Hassner随想《Age and Gender
Classification Using Convolutional Neural
Networks》http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.722.9654&rank=1
。模型 https://github.com/dpressel/rude-carnie/blob/master/model.py
。tenforflow.contrib.slim。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
import re
from tensorflow.contrib.layers import *
from tensorflow.contrib.slim.python.slim.nets.inception_v3 import
inception_v3_base
TOWER_NAME = ‘tower’
def select_model(name):
if name.startswith(‘inception’):
print(‘selected (fine-tuning) inception model’)
return inception_v3
elif name == ‘bn’:
print(‘selected batch norm model’)
return levi_hassner_bn
print(‘selected default model’)
return levi_hassner
def get_checkpoint(checkpoint_path, requested_step=None,
basename=’checkpoint’):
if requested_step is not None:
model_checkpoint_path = ‘%s/%s-%s’ % (checkpoint_path, basename,
requested_step)
if os.path.exists(model_checkpoint_path) is None:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
print(model_checkpoint_path)
print(model_checkpoint_path)
return model_checkpoint_path, requested_step
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
# Restore checkpoint as described in top of this program
print(ckpt.model_checkpoint_path)
global_step =
ckpt.model_checkpoint_path.split(‘/’)[-1].split(‘-‘)[-1]
return ckpt.model_checkpoint_path, global_step
else:
print(‘No checkpoint file found at [%s]’ % checkpoint_path)
exit(-1)
def _activation_summary(x):
tensor_name = re.sub(‘%s_[0-9]*/’ % TOWER_NAME, ”, x.op.name)
tf.summary.histogram(tensor_name + ‘/activations’, x)
tf.summary.scalar(tensor_name + ‘/sparsity’, tf.nn.zero_fraction(x))
def inception_v3(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.00004
stddev=0.1
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“InceptionV3”, “InceptionV3”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d, tf.contrib.slim.fully_connected],
weights_regularizer=weights_regularizer,
trainable=True):
with tf.contrib.slim.arg_scope(
[tf.contrib.slim.conv2d],
weights_initializer=tf.truncated_normal_initializer(stddev=stddev),
activation_fn=tf.nn.relu,
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
net, end_points = inception_v3_base(images, scope=scope)
with tf.variable_scope(“logits”):
shape = net.get_shape()
net = avg_pool2d(net, shape[1:3], padding=”VALID”, scope=”pool”)
net = tf.nn.dropout(net, pkeep, name=’droplast’)
net = flatten(net, scope=”flatten”)

with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.truncated_normal([2048, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(net, weights), biases, name=scope.name)
_activation_summary(output)
return output
def levi_hassner_bn(nlabels, images, pkeep, is_training):
batch_norm_params = {
“is_training”: is_training,
“trainable”: True,
# Decay for the moving averages.
“decay”: 0.9997,
# Epsilon to prevent 0s in variance.
“epsilon”: 0.001,
# Collection containing the moving mean and moving variance.
“variables_collections”: {
“beta”: None,
“gamma”: None,
“moving_mean”: [“moving_vars”],
“moving_variance”: [“moving_vars”],
}
}
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassnerBN”, “LeviHassnerBN”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01),
normalizer_fn=batch_norm,
normalizer_params=batch_norm_params):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
conv2 = convolution2d(pool1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
conv3 = convolution2d(pool2, 384, [3, 3], [1, 1], padding=’SAME’,
biases_initializer=tf.constant_initializer(0.), scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
# can use tf.contrib.layer.flatten
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output
def levi_hassner(nlabels, images, pkeep, is_training):
weight_decay = 0.0005
weights_regularizer =
tf.contrib.layers.l2_regularizer(weight_decay)
with tf.variable_scope(“LeviHassner”, “LeviHassner”, [images]) as
scope:
with tf.contrib.slim.arg_scope(
[convolution2d, fully_connected],
weights_regularizer=weights_regularizer,
biases_initializer=tf.constant_initializer(1.),
weights_initializer=tf.random_normal_initializer(stddev=0.005),
trainable=True):
with tf.contrib.slim.arg_scope(
[convolution2d],
weights_initializer=tf.random_normal_initializer(stddev=0.01)):
conv1 = convolution2d(images, 96, [7,7], [4, 4], padding=’VALID’,
biases_initializer=tf.constant_initializer(0.), scope=’conv1′)
pool1 = max_pool2d(conv1, 3, 2, padding=’VALID’, scope=’pool1′)
norm1 = tf.nn.local_response_normalization(pool1, 5, alpha=0.0001,
beta=0.75, name=’norm1′)
conv2 = convolution2d(norm1, 256, [5, 5], [1, 1], padding=’SAME’,
scope=’conv2′)
pool2 = max_pool2d(conv2, 3, 2, padding=’VALID’, scope=’pool2′)
norm2 = tf.nn.local_response_normalization(pool2, 5, alpha=0.0001,
beta=0.75, name=’norm2′)
conv3 = convolution2d(norm2, 384, [3, 3], [1, 1],
biases_initializer=tf.constant_initializer(0.), padding=’SAME’,
scope=’conv3′)
pool3 = max_pool2d(conv3, 3, 2, padding=’VALID’, scope=’pool3′)
flat = tf.reshape(pool3, [-1, 384*6*6], name=’reshape’)
full1 = fully_connected(flat, 512, scope=’full1′)
drop1 = tf.nn.dropout(full1, pkeep, name=’drop1′)
full2 = fully_connected(drop1, 512, scope=’full2′)
drop2 = tf.nn.dropout(full2, pkeep, name=’drop2′)
with tf.variable_scope(‘output’) as scope:

weights = tf.Variable(tf.random_normal([512, nlabels], mean=0.0,
stddev=0.01), name=’weights’)
biases = tf.Variable(tf.constant(0.0, shape=[nlabels],
dtype=tf.float32), name=’biases’)
output = tf.add(tf.matmul(drop2, weights), biases, name=scope.name)
return output

陶冶模型。https://github.com/dpressel/rude-carnie/blob/master/train.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import xrange
from datetime import datetime
import time
import os
import numpy as np
import tensorflow as tf
from data import distorted_inputs
from model import select_model
import json
import re
LAMBDA = 0.01
MOM = 0.9
tf.app.flags.DEFINE_string(‘pre_checkpoint_path’, ”,
“””If specified, restore this pretrained model “””
“””before beginning any training.”””)
tf.app.flags.DEFINE_string(‘train_dir’,
‘/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0’,
‘Training directory’)
tf.app.flags.DEFINE_boolean(‘log_device_placement’, False,
“””Whether to log device placement.”””)
tf.app.flags.DEFINE_integer(‘num_preprocess_threads’, 4,
‘Number of preprocessing threads’)
tf.app.flags.DEFINE_string(‘optim’, ‘Momentum’,
‘Optimizer’)
tf.app.flags.DEFINE_integer(‘image_size’, 227,
‘Image size’)
tf.app.flags.DEFINE_float(‘eta’, 0.01,
‘Learning rate’)
tf.app.flags.DEFINE_float(‘pdrop’, 0.,
‘Dropout probability’)
tf.app.flags.DEFINE_integer(‘max_steps’, 40000,
‘Number of iterations’)
tf.app.flags.DEFINE_integer(‘steps_per_decay’, 10000,
‘Number of steps before learning rate decay’)
tf.app.flags.DEFINE_float(‘eta_decay_rate’, 0.1,
‘Learning rate decay’)
tf.app.flags.DEFINE_integer(‘epochs’, -1,
‘Number of epochs’)
tf.app.flags.DEFINE_integer(‘batch_size’, 128,
‘Batch size’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint name’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘pre_model’,
”,#’./inception_v3.ckpt’,
‘checkpoint file’)
FLAGS = tf.app.flags.FLAGS
# Every 5k steps cut learning rate in half
def exponential_staircase_decay(at_step=10000, decay_rate=0.1):
print(‘decay [%f] every [%d] steps’ % (decay_rate, at_step))
def _decay(lr, global_step):
return tf.train.exponential_decay(lr, global_step,
at_step, decay_rate, staircase=True)
return _decay
def optimizer(optim, eta, loss_fn, at_step, decay_rate):
global_step = tf.Variable(0, trainable=False)
optz = optim
if optim == ‘Adadelta’:
optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)
lr_decay_fn = None
elif optim == ‘Momentum’:
optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)
lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)
return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta,
optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)
def loss(logits, labels):
labels = tf.cast(labels, tf.int32)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name=’cross_entropy_per_example’)
cross_entropy_mean = tf.reduce_mean(cross_entropy,
name=’cross_entropy’)
tf.add_to_collection(‘losses’, cross_entropy_mean)
losses = tf.get_collection(‘losses’)
regularization_losses =
tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
total_loss = cross_entropy_mean + LAMBDA *
sum(regularization_losses)
tf.summary.scalar(‘tl (raw)’, total_loss)
#total_loss = tf.add_n(losses + regularization_losses,
name=’total_loss’)
loss_averages = tf.train.ExponentialMovingAverage(0.9, name=’avg’)
loss_averages_op = loss_averages.apply(losses + [total_loss])
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name + ‘ (raw)’, l)
tf.summary.scalar(l.op.name, loss_averages.average(l))
with tf.control_dependencies([loss_averages_op]):
total_loss = tf.identity(total_loss)
return total_loss
def main(argv=None):
with tf.Graph().as_default():
model_fn = select_model(FLAGS.model_type)
# Open the metadata file and figure out nlabels, and size of epoch
#
打开元数据文件md.json,这几个文件是在预处理多少时生成。找出nlabels、epoch大小
input_file = os.path.join(FLAGS.train_dir, ‘md.json’)
print(input_file)
with open(input_file, ‘r’) as f:
md = json.load(f)
images, labels, _ = distorted_inputs(FLAGS.train_dir,
FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)
logits = model_fn(md[‘nlabels’], images, 1-FLAGS.pdrop, True)
total_loss = loss(logits, labels)
train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss,
FLAGS.steps_per_decay, FLAGS.eta_decay_rate)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
sess = tf.Session(config=tf.ConfigProto(
log_device_placement=FLAGS.log_device_placement))
tf.global_variables_initializer().run(session=sess)
# This is total hackland, it only works to fine-tune iv3
# 本例能够输入预磨炼模型Inception V3,可用来微调 英斯ption V3
if FLAGS.pre_model:
inception_variables = tf.get_collection(
tf.GraphKeys.VARIABLES, scope=”InceptionV3″)
restorer = tf.train.Saver(inception_variables)
restorer.restore(sess, FLAGS.pre_model)
if FLAGS.pre_checkpoint_path:
if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:
print(‘Trying to restore checkpoint from %s’ %
FLAGS.pre_checkpoint_path)
restorer = tf.train.Saver()
tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)
print(‘%s: Pre-trained model restored from %s’ %
(datetime.now(), FLAGS.pre_checkpoint_path))
# 将ckpt文件存款和储蓄在run-(pid)目录
run_dir = ‘%s/run-%d’ % (FLAGS.train_dir, os.getpid())
checkpoint_path = ‘%s/%s’ % (run_dir, FLAGS.checkpoint)
if tf.gfile.Exists(run_dir) is False:
print(‘Creating %s’ % run_dir)
tf.gfile.MakeDirs(run_dir)
tf.train.write_graph(sess.graph_def, run_dir, ‘model.pb’,
as_text=True)
tf.train.start_queue_runners(sess=sess)
summary_writer = tf.summary.FileWriter(run_dir, sess.graph)
steps_per_train_epoch = int(md[‘train_counts’] /
FLAGS.batch_size)
num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs
* steps_per_train_epoch
print(‘Requested number of steps [%d]’ % num_steps)

for step in xrange(num_steps):
start_time = time.time()
_, loss_value = sess.run([train_op, total_loss])
duration = time.time() – start_time
assert not np.isnan(loss_value), ‘Model diverged with loss = NaN’
# 每10步记录贰回摘要文件,保存二个检查点文件
if step % 10 == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)

format_str = (‘%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ‘
‘sec/batch)’)
print(format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# Loss only actually evaluated every 100 steps?
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)

if step % 1000 == 0 or (step + 1) == num_steps:
saver.save(sess, checkpoint_path, global_step=step)
if __name__ == ‘__main__’:
tf.app.run()

证实模型。https://github.com/dpressel/rude-carnie/blob/master/guess.py

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from data import inputs
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import *
import os
import json
import csv
RESIZE_FINAL = 227
GENDER_LIST =[‘M’,’F’]
AGE_LIST = [‘(0, 2)’,'(4, 6)’,'(8, 12)’,'(15, 20)’,'(25, 32)’,'(38,
43)’,'(48, 53)’,'(60, 100)’]
MAX_BATCH_SZ = 128
tf.app.flags.DEFINE_string(‘model_dir’, ”,
‘Model directory (where training data lives)’)
tf.app.flags.DEFINE_string(‘class_type’, ‘age’,
‘Classification type (age|gender)’)
tf.app.flags.DEFINE_string(‘device_id’, ‘/cpu:0’,
‘What processing unit to execute inference on’)
tf.app.flags.DEFINE_string(‘filename’, ”,
‘File (Image) or File list (Text/No header TSV) to process’)
tf.app.flags.DEFINE_string(‘target’, ”,
‘CSV file containing the filename processed along with best guess and
score’)
tf.app.flags.DEFINE_string(‘checkpoint’, ‘checkpoint’,
‘Checkpoint basename’)
tf.app.flags.DEFINE_string(‘model_type’, ‘default’,
‘Type of convnet’)
tf.app.flags.DEFINE_string(‘requested_step’, ”, ‘Within the model
directory, a requested step to restore e.g., 9000’)
tf.app.flags.DEFINE_boolean(‘single_look’, False, ‘single look at the
image or multiple crops’)
tf.app.flags.DEFINE_string(‘face_detection_model’, ”, ‘Do frontal
face detection with model specified’)
tf.app.flags.DEFINE_string(‘face_detection_type’, ‘cascade’, ‘Face
detection model type (yolo_tiny|cascade)’)
FLAGS = tf.app.flags.FLAGS
def one_of(fname, types):
return any([fname.endswith(‘.’ + ty) for ty in types])
def resolve_file(fname):
if os.path.exists(fname): return fname
for suffix in (‘.jpg’, ‘.png’, ‘.JPG’, ‘.PNG’, ‘.jpeg’):
cand = fname + suffix
if os.path.exists(cand):
return cand
return None
def classify_many_single_crop(sess, label_list, softmax_output,
coder, images, image_files, writer):
try:
num_batches = math.ceil(len(image_files) / MAX_BATCH_SZ)
pg = ProgressBar(num_batches)
for j in range(num_batches):
start_offset = j * MAX_BATCH_SZ
end_offset = min((j + 1) * MAX_BATCH_SZ, len(image_files))

batch_image_files = image_files[start_offset:end_offset]
print(start_offset, end_offset, len(batch_image_files))
image_batch = make_multi_image_batch(batch_image_files, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
batch_sz = batch_results.shape[0]
for i in range(batch_sz):
output_i = batch_results[i]
best_i = np.argmax(output_i)
best_choice = (label_list[best_i], output_i[best_i])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)
if writer is not None:
f = batch_image_files[i]
writer.writerow((f, best_choice[0], ‘%.2f’ % best_choice[1]))
pg.update()
pg.done()
except Exception as e:
print(e)
print(‘Failed to run all images’)
def classify_one_multi_crop(sess, label_list, softmax_output,
coder, images, image_file, writer):
try:
print(‘Running file %s’ % image_file)
image_batch = make_multi_crop_batch(image_file, coder)
batch_results = sess.run(softmax_output,
feed_dict={images:image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]

for i in range(1, batch_sz):
output = output + batch_results[i]

output /= batch_sz
best = np.argmax(output) # 最大概品质分类
best_choice = (label_list[best], output[best])
print(‘Guess @ 1 %s, prob = %.2f’ % best_choice)

nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print(‘Guess @ 2 %s, prob = %.2f’ % (label_list[second_best],
output[second_best]))
if writer is not None:
writer.writerow((image_file, best_choice[0], ‘%.2f’ %
best_choice[1]))
except Exception as e:
print(e)
print(‘Failed to run image %s ‘ % image_file)
def list_images(srcfile):
with open(srcfile, ‘r’) as csvfile:
delim = ‘,’ if srcfile.endswith(‘.csv’) else ‘\t’
reader = csv.reader(csvfile, delimiter=delim)
if srcfile.endswith(‘.csv’) or srcfile.endswith(‘.tsv’):
print(‘skipping header’)
_ = next(reader)

return [row[0] for row in reader]
def main(argv=None): # pylint: disable=unused-argument
files = []

if FLAGS.face_detection_model:
print(‘Using face detector (%s) %s’ % (FLAGS.face_detection_type,
FLAGS.face_detection_model))
face_detect = face_detection_model(FLAGS.face_detection_type,
FLAGS.face_detection_model)
face_files, rectangles = face_detect.run(FLAGS.filename)
print(face_files)
files += face_files
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as sess:
label_list = AGE_LIST if FLAGS.class_type == ‘age’ else
GENDER_LIST
nlabels = len(label_list)
print(‘Executing on %s’ % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):

images = tf.placeholder(tf.float32, [None, RESIZE_FINAL,
RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()

requested_step = FLAGS.requested_step if FLAGS.requested_step else
None

checkpoint_path = ‘%s’ % (FLAGS.model_dir)
model_checkpoint_path, global_step =
get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)

saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)

softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
# Support a batch mode if no face detection model
if len(files) == 0:
if (os.path.isdir(FLAGS.filename)):
for relpath in os.listdir(FLAGS.filename):
abspath = os.path.join(FLAGS.filename, relpath)

if os.path.isfile(abspath) and any([abspath.endswith(‘.’ + ty) for ty
in (‘jpg’, ‘png’, ‘JPG’, ‘PNG’, ‘jpeg’)]):
print(abspath)
files.append(abspath)
else:
files.append(FLAGS.filename)
# If it happens to be a list file, read the list and clobber the
files
if any([FLAGS.filename.endswith(‘.’ + ty) for ty in (‘csv’, ‘tsv’,
‘txt’)]):
files = list_images(FLAGS.filename)

writer = None
output = None
if FLAGS.target:
print(‘Creating output file %s’ % FLAGS.target)
output = open(FLAGS.target, ‘w’)
writer = csv.writer(output)
writer.writerow((‘file’, ‘label’, ‘score’))
image_files = list(filter(lambda x: x is not None, [resolve_file(f)
for f in files]))
print(image_files)
if FLAGS.single_look:
classify_many_single_crop(sess, label_list, softmax_output, coder,
images, image_files, writer)
else:
for image_file in image_files:
classify_one_multi_crop(sess, label_list, softmax_output, coder,
images, image_file, writer)
if output is not None:
output.close()

if __name__ == ‘__main__’:
tf.app.run()

微软脸部图片识别性别、年龄网站 http://how-old.net/
。图片识别年龄、性别。依据标题查找图片。

参考资料:
《TensorFlow技术解析与实战》

迎接推荐新加坡机械学习工作机遇,小编的微信:qingxingfengzi